DYNAMICS OF THE FORMATION OF BUBBLES IN
A VIBRATING CAPILLARY

I. S. Grachev, D. T. Kokorev, UDC 532.529.6
and V. F. Yudaev

The instant of separation of a gas bubble from a liquid occupying a vibrating capillary at
Reynolds numbers of Re < 100 is considered. The dimensions of the bubble are determined
analytically in relation to the amplitude and frequency of vibration of the capillary. The re-
sults are compared with experiment. Three basic conditions of bubble formation are dis-
tinguished.

The intensification of heat- and mass-transfer processes in liquid—liquid and liquid—gas systems
may be achieved by increasing the surface of contact of the reacting phases, and also by establishing a
favourable hydrodynamic situation in the zone of diffusive transfer — this may be done by suitable appara-
tus design. For example, in the case of processes in a liquid—gas system it is desirable to ensure the
smallest possible bubble size in a capillary of specified dimensions, subject to an adequate rate of flow {1].
In order to solve this problem, we propose dispersing gases and liquids in liquids, and liquids in gases
{i.e., "granulating" the liquids), by means of a vibrating capillary.

In order to simplify the analytical determination of the size of the bubble escaping from the vibrating
capillary, we shall introduce an approximation by treating the bubble as rigid and spherical.

During the to-and-fro motion of the bubble in the vertical direction, the following forces act upon it:
the Archimedes lifting force FA = ApgV; the retaining capillary force Fe = 2n0R; the Stokes force Fg
= 6rvpaU; the force of inertia Fp = M(dU/dt) arising as a result of the nonuniform to-and-fro motion of
the bubble in the liquid. The first two forces depend solely on the dimensions of the neck and the bubble;
they are determined as in the case of a static capillary. The last two forces are due to the vibration of the
capillary. The forces Fg and Fy, acting on a bubble the center of which oscillates harmonically

x = Asin of, 1)

may be expressed thus
Fg = 6nvpade cos o, 2)
Fy= — MAw?sin wt. (3)

It follows that the extremal value of the sum of the forces

_:t— (6mvoaAw cos wt — MAw? sin wf) = @)

is determined by the phase of the oscillation
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where, from the conditions governing the detachment of the bubble, we must take the signs of the trigono-
metric functions thus:
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Cos@le =

so that the phase wig may correspond to the third quarter of

the period, when the forces (2) and (3) are directed upward.

The sign of the second derivative of the sum (2) and (3) in the

phase (6) determines the character of the extremal point
a (6avpa)® — (Mo)?
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For the condition

Fig. 1. Diagram to illustrate the Mo (8)
derivation of the basic relations (a) 6rvpa

and form of the experimental appara- in the extremal phase, the sum of the forces is at a maximum,
tus (b): 1) compressor; 2) receiver; since the second derivative (7) is less than zero., Otherwise
3) sound generator; 4) amplifier; 5) the sum of the forces (2) and (3) is a minimum,

electrodynamic converter; 6) capil-
lary; 7) column; 8) diaphragm; 9)
flowmeter; 10) manometer.

On satisfying Eq. (8), the inequality Fg < Fy in the ex-
tremal phase of the vibration (6) is strengthened by the fact
that we now also have the inequality

— sin wfe > cos wie 9)

and the middle section of the gas bubble diminishes during its downward motion in the trace of the capil-
lary, which leads to a reduction in the frontal resistance Fg. Without allowing for this latter factor, we
may determine the ratio of the maximum sum of the forces (Fg + Fp)max to the maximum value of the force

(Fp)max thus

(F$-~ Fb)max - / 1= i Brpva \?
(Fb)max ‘ K ( M&) ) ' (10)
Hence, for sufficiently large forces Fg and Fy, in low-viscosity liquids, for which the condition
Erpva \? .
b kg Il
( ) < (1)

is satisfied, we may assume that a varying force Fj acts on the bubble, and this force determines the in-
stant of detachment of the bubble from the capillary at the upper point. For low frequencies the alternat-
ing forces are small and the detachment of the bubble is determined by the forces Fp and F.

On satisfying Eq. (11), the forces acting on the bubble at the upper point are determined thus*
Fy+ Fy=Fe. (12)
The augmented mass M of the translational, nonuniform motion of the sphere in the liquid referred

to in Eq. (3) may be found [2] from the well~-known velocity potential

3
Q= —;—U—%— cos B (13)
o

and the definition of the kinetic energy of the liquid W

an T

W =MU? = —p ‘ ‘ (p——-a(p ds 14
ar (14)
0 ereast1CE .

Here the limits of integration are determined from Fig. la, allowing for the direction of motion of the
gas bubble. It follows from (13) and (14) that

3 ———
M= 14y T—0F. (15)
*In general when (Fg + Fplymax + FA = Fe we obtain an equation of the sixth degree for the radius of the
bubble. An analysis of the equation may be required for the dispersion of gases and liguids in-liquids and
the granulation of liquids {melts) in a gas.
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If we allow for the finite dimensions of the capillary (neck of the bubble) we have
Fa =Apg( Vsp“' Vseg ) {16)
Calculations show (Fig. la) that
1 Cc?
= —nhpga| 1+ [7— =
Fy g AeE [ \ 2
Allowing for the latter equation and remembering that at the point under consideration [(3) and (15)]
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/
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Eq. (12) takes the form (Ap ® p)

! 3 ! 3 2 1 % 7 . pe——e Aw?
—napgl 1 - —C+ [ T— "V 1 —C* +2(1+ V(I —=CP | = 2n6R (19)
6 2 \ 2 2¢
In particular, for a static capillary [1]
s 3 Ro
Gy = ) og (20)
From (19) and (20) we obtain
3 2
ap Vn ___1_. _3. 2 (7_6_) S
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2 2g
or
o Ky (€ K (0 22)
V 2g

Here Ki(Cz) is a function of the volumetric deformation [volume deformation factor (16)], while Kz(Cz) isa
function of the form of the bubble surface [form factor (14)]. For a rigid spherical particle K; and K, may
be found from Eq. {21). For any other form of the bubble, allowance must be made for (14) and (16). The
argument C is different for K; and K, if the bubble is not spherical.

In order to study the formation of a bubble on a vibrating capillary experimentally, we made the ap-
paratus illustrated in Fig. 1lb. The volume of the bubble was determined as the mean of several bubbles.
The experiments were made with a capillary of radius 1.6 mm, and amplitude and frequency f of the vibra-
tions being regulated by means of a UM-50A amplifier and ZG-11 generator, between 20 and 250 Hz; the
vibrator was an electrodynamic converter of the 100GRD-III-I type. The experiments were carried out in
the distilled water—air system. The pressure in the receiver was kept constant; the flow of air was reg-
ulated with a diaphragm.

The results of our experiments to determine the size of the bubble as a function of the relative ac~
celeration, defined by the complex AwY/ 2g, are presented in Fig. 2. From Fig. 2 we may draw the follow-
ing conclusions.

1. For low frequencies and considerable amplitudes (curves 1 and 2), the coefficients K, are greater
than unity, and K; of the order of unity.

2. For all frequencies and small amplitudes (initial parts of the curves) K; = 1.

3. For the frequencies studied, K, increases with the amplitude while K; becomes negative. For
certain values of the complex Aw?/ 2g microscopic bubbles are formed in a transient manner (asymptotes
of curves 3-5).

4, For low (curves 1 and 2) and high (curves 6-8) frequencies we were never able to reach the am-
plitudes at which the transient dispersion of the gas through the macroscopic capillary began.

5. Both from the point of view of energy consumption and from that of the action of the vibrating
capillary ion the dispersion of gas in the liquid, the least effective frequencies for the capillary under

1107



2
' o 4
Fig. 2. Experimental dependence of the relative volume of the
bubble on the vibrational acceleration of the capillary. For acon-
stant cyclical frequency (Hz) of the vibrations of the capillary
(continuous curves): 1) 20 Hz; 2) 40; 3) 60; 4) 80; 5) 100; 6)
140, 7) 180; 8) 250; for a constant amplitude (mm) (broken
curves): 9) 0.1; 10) 0.3; 11) 0.5; 12) 0.7; 13) 0.9,

consideration are those above 100 Hz. At high frequencies the model of a rigid spherical bubble does not
correspond to experimental facts.

6. The dispersion of the gas in the liquid in a vibrating capillary depends not only on the complex
AvY/ 2g but also on the amplitude of the vibrations of the capillary, which {other conditions being equal)
affect the conditions relating to the rigid spherical bubble. For low frequencies and a large amplitude,
the bubble has the form of an elliptical cap directed with its vertex toward the capillary, while the major
semiaxis coincides with the direction of motion. In this case the Archimedes force does not change (coef-
ficient K;) while the augmented mass increases sharply (coefficient K,, equal to the slope of the tangents
to the curves 1 and 2). For high frequencies and a small amplitude, the bubble has a spherical shape,
and the coefficients K; and K; are similar to the calculated values of Egs. (14) and (16) (curves 7 and 8).
For amplitudes of 0.5-1.0 mm and frequencies of 60-100 Hz, the shape of the bubble is unstable; it dis—
perses into micro-bubbles {(asymptotes of curves 3-5).

From a consideration of the curves and also visual observations, we may distinguish three main
conditions for the formation of bubbles: 1) that of a transient bubble shape for low frequencies and large
amplitudes; 2) that of a fan-like atomization of the gas for fairly large amplitudes and moderate frequen-
cies; 3) that of a "steady" shape of the bubble, almost spherical for high frequencies and small ampli-
tudes, when there is little relative motion of the bubble and the liquid, so that the forces (2) and (3) are
also small. This is the case in which the action of capillary vibration on the formation of the bubble is

least effective.
A quantitative estimation of these three distinct conditions of bubble formation will probably involve

the dimensions of the capillary, the viscosity and surface tension between the dispersed and dispersing
phases, the pressure and rate of flow of the dispersing phase, and so on.

NOTATION
Fa is the Archimedes lifting force;
Ap is the difference between the densities of the liquid and the gas;
a is the radius of the bubble;
g is the gravitational acceleration;
Fg is the retaining capillary force;
R is the radius of capillary (neck of the bubble at the instant of detachment);
o is the surface tension at the interface;



ds is the element of surface area on the bubble in a spherical coordinate system;

Fg is the Stokes force;

v is the kinematic viscosity of the liquid;

o) is the density of the liquid;

Fn is the inertial force;

M is the augmented mass;

U is the variable velocity of the to-and-fro motion of the bubble;

t is the time;

r, 8 are the spherical coordinates;

X is the displacement of the center of the bubble and the capillary from the static equilibrium
position;

A is the amplitude of vibration of the capillary;

f, v =2nf arethe cyclical and angular frequencies of the vibration of the capillary;

@ is the velocity potential of the liquid;

w is the kinetic energy of the liquid;

v is the volume of the bubble obtained on the vibrating capillary;

Vo ag are the volume and radius of the bubble obtained on the static capillary;

Vsps Vseg are the volumes of the sphere and segment; C =R/a; Re = Ua/v = Awva/v.
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